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Markov Models




Reasoning over Time or Space

e Often, we want to reason about a sequence of observations
* Speech recognition
* Robot localization
* User attention

* Medical monitoring

* Need to introduce time (or space) into our models



Markov Models

* Value of X at a given time is called the state

)0 (0)>(r) - -+
P(X1) P(X¢| X—1)

* Parameters: called transition probabilities or dynamics, specify how the state evolves
over time (also, initial state probabilities)

* Stationarity assumption: transition probabilities the same at all times
* Same as MDP transition model, but no choice of action
* A "growable” BN (can always use BN methods if we fruncate to fixed length) |/
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Joint Distribution of a Markov Model

P(X1)  P(XyXi-1)
* Joint distribution:
P(X1, X2, X5, X4) = P(X1)P(X2|X1)P(X3]| X)) P(X4| X5)

* More generally:

P(X1,Xs,...,X7) = P(X1)P(Xa|X1)P(X3]|Xs) ... P(X7|X1_1)

= P(Xy) | [ P(Xe|Xi-1)

e Questions to be resolved: t=2
* Does this indeed define a joint distribution?

e’

* Can every joint distribution be factored this way, or are we making some assumptions about /
the joint distribution by using this factorization? 6
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\/ Markov Assumption: Conditional Independence

Od 6s (&)

 Basic conditional independence:

S’

et

« Past and future independent given the present
« Each time step only depends on the previous

« This is called the (first order) Markov property



Chain Rule and Markov Models

:

* From the chain rule, every joint distribution over X; X5, X3, X, can be written as:

P(X17X27X37X4) — P(Xl)P(X2|X1)P(X3‘X17XQ)P(X4‘X17X27X3)
* Assuming that X3 1l X7 | Xo and X, 1l Xy, Xo | X3

Results in the expression posited on the previous slide:
P(X1, X2, X3, X4) = P(X1)P(X2| X1) P (X3 X2) P(X4]| X3)

* NS (U - )
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Chain Rule and Markov Models: General Case

) D Oa O Ot

* From the chain rule, every joint distribution over X7, X9, ..., X7 can be written as:

T
P(X1,Xa,...,Xr) = P(X1) | | P(Xe| X1, Xs, .., Xy 1)
t=2

* Assuming that for all t:

Xe L Xq,..., X0 | Xo

Gives us the expression posited on the earlier slide:

G
P(X1, Xs,..., X7) = P(X1) | [ P(X:|Xi1)
t=2
— \/ - v
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* States: X = {rain, sun}

o

Example Markov Chain: Weather

Xea | X | P(X¢|Xea)
sun | sun 0.9
sun | rain 0.1
rain | sun 0.3
rain | rain 0.7

---

'I )

o

,\

4

Two new ways of representing the same CPT

0.9
sun
S
0.7
0-1- \/ - 9

sun

)\
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\/ ~  Example Markov Chain: Weather

—

0.9

e |nitial distribution: 1.0 sun
 Weknow: P(X;),P(X:1X;—1)

 What is the probability distribution after one step?

P(X; = sun) = Xy, P(x1,X; = sun) = X, P(X; = sun |x;)P(x1) =
P(X, = sun | X; = sun)P(X; = sun) + P(X, = sun |X; = rain) P(X; = rain) =
0.9x1.0 + 0.3x0.0 =0.9
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-4 Mini-Forward Algorithm

—

S

* Question: what’s P(X) on some day t¢

O-O-@D-@ - @

We know: P(Xy),P(X¢|X¢—1)

P(:Ct) = Z P(xi_q,x4)

Tt—1
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Example Run of Mini-Forward Algorithm

" From initial observation of sun

(00) (01) {ois) {oiss)=={0zs)

P(X)) P(X5) P(X3) P(X,) P(X)

" From initial observation of rain

(10) (o7) {052 ) {oara )={ozs)

P(X)) P(X3) P(X;) P(Xy) P(X.,)

" From vet another initial distribution P(X,):
1p> :><o.25>
P(XI) — \/ P(Xoo)

Ny

~

) \
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\/ N Stationary Distributions

9 \—/
N
* For most chains:
* Influence of the initial distribution gets = The distribution we end up with is called
less and less over time. the stationary distribution P__of the
* The distribution we end up in is chain
independent of the initial distribution = |t satisfies

Poo(X) = Pot1(X) = ZP(XIZC)POO(Q?)

©- ot
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- Example: Stationary Distributions

~—

* Question: what's P(X) at time t = infinity?2

OO0 ©

- x—}—l ZP \'

Py (sun) = P(sun\sun)Poo(sun) + P(sun|rain) Py (rain)
Py (rain) = P(rain|sun)Ps (sun) + P(rain|rain)Ps (rain)
: Xew | Xe | P(Xe|Xea)
Py (sun) = 0.9P (sun) + 0.3 Py (rain)
_01P 0.7P . sun | sun 0.9
Py (rain) = 0.1 P, (sun) + 0.7Px (rain) o
Poo(szfn) = 3P (rain) P (sun) = 3/4 ra?n su'n 0.3
P (razn) — 1/3POO (Sun) > rain | rain 0.7

Also: P (sun) + P (rain) = 1 Po(rain) =1/4

 Alternatively: run simulation for a long (ideally infinite) time ™ N/



*%plica’rion of Stationary Distribution: Web Link Analysis

S—

* PageRank over a web graph
* Each web page is a state

* Initial distribution: uniform over pages
* Transitions:

* With prob. ¢, uniform jump to a

random page (dotted lines, not all shown)
* With prob. 1-c, follow a random

outlink (solid lines)

* Stationary distribution
* Will spend more time on highly reachable pages
* e.g. Many ways to get to the acrobat reader download page
* Somewhat robust to link spam

* Google 1.0 returned the set of pages containing all your
keywords in decreasing rank, now all search engines use link
analysis along with many other factors (rank actually getting less
important over time)

S’




\Ayplicq’rion of Stationary Distributions: Gibbs Sampling

< Each joint instantiation over all hidden and query
variables is a state: {X;, ..., X,} =HU Q

* Transitions:

* Resample variable x; according to

p(Xi | X]l X2l sy Xi-],Xi+]l ceer Xn, E], R Em)

* Stationary distribution:
* Conditional distribution P(X;, X, , ..., X, [E; ... E)

* Means that when running Gibbs sampling long enough we get

a sample from the desired distribution

* Requires some proof to show this is true!




Hidden Markov Models




- Hidden Markov Models

—

S

* Markov chains not so useful for most agents

oNorotom= 0

* Need observations to update your beliefs \/\LO

 Hidden Markov models (HMMs)

* Underlying Markov chain over states X
* You observe outputs (effects) at each time step

- hl\ J.



\/ Example: Weather HMM

e’ P(Xt ’ Xt—l)
[ /11y
Et \ Xt
Umbrella;.; Umbrella,,;
Transmissions Emissions
° An HMM iS defined by Rt Rt+1 P(Rt+1|Rt) Rt Ut P(Utl Rt)

+r +r 0.7 +r +Uu 0.9

* |nitial distribution: P(X]_) 0.3 01 ®
+r -r . +r -u .

* Transitions: P(Xt | Xt—l) or +r 0.3 r +U 0.2

* Emissions: P(Et | Xt) -r -r 0.7 -r -u 0.8 20

Vu\/ st
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Joint Distribution of an HMM

@ _»@ _»@_ s

e Joint distribution:

P(X1, Ev, X2, By, X3, E3) = P(X1)P(E1|X1)P(X2|X1)P(E2| X2)P(X3]X2)P(E5| X3)

* More generally: T

P(Xy, B,..., Xy, Er) = P(X1)P(Ey|X1) | | P(Xi|Xe—1) P(Ei| Xt)
e Questions to be resolved: s
* Does this indeed define a joint distribution?

e Can every joint distribution be factored this way, or are we making some assumptions about the
joint distribution by using this factorization? 22 \/
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Chain Rule and HMMs @4@»@--»
& & &

* From the chain rule, every joint distribution over X, . F;. X5, F5, X3, F5 can be written as:

P(X1,E1, Xy, By, X3, E3) =P(X1)P(E1|X1)P(X2| Xy, E1)P(E2| X1, E1, X2)
P(X3| X1, E1, Xo, E2)P(E3| X, B, Xo, B, X3)

e Assuming that

Xo 1l By | X1, Eo U Xy,E1 | Xe, X5l Xy,FEq1,Fy| Xo, FEs 1 Xy, Fq, X5, FEs | X3

Gives us the expression posited on the previous slide: —
P(X1,E1, X, Ey, X3, F3) = P(X1)P(E1|X1)P(X2|X1)P(F2| Xo)P(X3|X2)P(E3| X3) J
23
N~ & S



Real HMM Examples

* Speech recognition HMMs:
* Observations are acoustic signals (continuous valued)

* States are specific positions in specific words (so, tens of thousands)

* Machine translation HMMs:

* Observations are words (tens of thousands)

* States are translation options

* Robot tracking:

* Observations are range readings (continuous)

* States are positions on a map (continuous)



Filtering / Monitoring

@*@"@"“@; Find: P(X; | e, ..., &) = By(X)
OO ©

Observe

J

* Filtering, or monitoring, is the task of tracking the distribution
B.(x) = P(X, | E,, ..., E) (the belief state) over time

* We start with By(x) in an initial setting, usually uniform

* As time passes, or we get observations, we update B(x)

* The Kalman filter was invented in the 60’s and first implemented

as a method of trajectory estimation for the Apollo program

v\‘/\_/
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2 Example: Robot Localization

Example from T
Michael Pfeiffer ‘

v

R
Prob 0 1
t=0
Sensor model: can read in which directions there is a wall, never more
than 1 mistake 26

Motion model: may not execute action with small prab. J
\—/
)\



N
Prob 0 1

t=1

Lighter grey: was possible to get the reading, but less likely b/c required 1

mistake
v o/

Nt
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Example: Robot Localization

0

t=2




Prob

Example: Robot Localization

0

t=3




Prob

Example: Robot Localization

0

t=4




Prob

Example: Robot Localization

0

t=5
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Inference: Find State Given Evidence

* We are given evidence at each time and want to know

B.(X) = P(X,| e1.t)

* |dea: start with P(X;) and derive B; in terms of By_4
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\/ o Inference: Base Cases
<) -

Observation: Passage of Time:

— @ \OO
o

—

o A

P(X1|€1) P(XQ)
P(xile1) = P(x1,e1)/P(e1) P(zp) =Y P(z1,z2) v,
OCXl P(:Ul,e]_) - ;P(a?l)P(ibzla?l) . /

= P(x1)P(e1|z1)

NV @ &



- Passage of Time

- =/
*“Assume we have current belief P(X | evidence to date)
C)—()
B(Xt) = P(Xtle1:)
* then, after one time step passes:
P(Xt_|_1 ‘61;75) — ZP(Xt—l—lyxt’@l:t)
Lt
= Z P(Xgy1|me,e1.4) P(xe]ert)
Lt
= ZP(XtH‘xt)P(xt‘el:t)
> Xt—l—l ZP X |5Ut Tt)

* Basic idea: beliefs get “pushed” through the transitions
« With the “B” notation, we have to be careful about what time step t the belief is about, and what evidence it 4

includes
TN U = - )
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\_/ N Example: Passage of Time

—

N

v As time passes, uncertainty “accumulates” (Transition model: ghosts usually go clockwise)

EEETTX
EEDETE
DEEEEE

M
Mm

M
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\/ Observation

* Assume we have current belief P(X | previous evidence):

B'(X¢41) = P(Xeq1ler)

* Then, after evidence comes in:

P(Xt+1’€1:t—|—1) _— P(Xt—l—la6t—|—1|€1:t)/P(€t—|—1‘61:t)

XXi41 P(Xt-l-laet-l-l‘ellt)

— P(€t+1 61:t,Xt+1)P(Xt+1|€1:t)

= Plecsa|Xonn)P(Xopafe) * o em bl g

* Or, compactly: Unlike passage of time, we have
to renormalize

S e\ J.

B(Xt41) x4y Plesr1]Xe41)B' (Xey1) o\
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\/ B Example: Observation

S’

« As we get observations, beliefs get reweighted, uncertainty “decreases”

MM

Before observation After observation

B(X) x P(e|X)B'(X)

~ NS




\/ Example: Weather HMM

o N’
S’
B’(+r) = 0.5 B’(+r) = 0.627
B’(-r) =0.5 B’(-r) =0.373
B(+r) =0.5 B(+r) = 0.818 B(+r) = 0.883
B(-r) =0.5 B(-r) =0.182 B(-r) =0.117
. R¢ | Rer | P(Resa|Ry) Re | Ue | P(URy)
Rain,
/ +r +r 0.7 +r +U 0.9
l +r -r 0.3 +r -u 0.1
-r +r 0.3 -r +U \9.2
38 \./
~ o/
J
- 5 ),
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\_/ < The Forward Algorithm

—

—/ * We are given evidence at each time and want to know
Bi(X) = P(Xtle1:t)

* We can derive the following updates

P(x¢|leq:) oxx P(x¢,e1-¢) -—J

= Y P(x4_1,74,€1:1)

Lt—1

= Y P(xy_1,e1:4—1)P(zt|zi—1) P(et|xt)
T 1
®)

= P(et|z) Y P(xtlwp—1)P(xi—1,€1:¢—1) v

Lt—1 39

V\Ju o)



Online Belief Updates

Oa0

Every time step, we start with current P(X | evidence)
We update for time: P(-Tt’el:t—l) — Z P(mt—l‘el:t—l) ' P($t|37t—1)

The forward algorithm does both at once (and doesn’t normalize)

Lt—1
We update for evidence: P(x¢|le1:t) oxx P(x¢le1-1—1) - P(et|xt) l
®.
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\/ Recap: Filtering
Elapse time: compute P( X, | e1..1)
Pllens) = S Pllensy) Pl |
rt—_1 mn
o e 15 0 TTOITT

P(xt‘elzt) X P($t‘€1:t—1) ' P(et\iﬁt)

Belief: <P(rain), P(sun)>

@ a P(X4) <0.5, 0.5> Prior on X;

P(X1 | = umbrella) <0.82, 0.18> Observe "/

a G P(X5 | Fh = umbrella)  <0.63,0.37> Elapse time /

P(X5 | E1 = umb, E5 = umb)  <0.88,0.12>  Observe

- S e\ J.



Particle Filtering

You are N
YOU oar ov
el garel = bere
here NaTnie
here
_ Yovore| _
Mv Oo he\"e
M
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B Particle Filtering

-

= Filtering: approximate solution

= Sometimes |X] is too big to use exact inference

= |X| may be too big to even store B(X)
= E.g. Xis continuous

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large
" |In memory: list of particles, not states

= This is how robot localization works in practice

= Particle is just new name for sample




| N/ N—
\/ \/
Representation: Particles

N’

* Our representation of P(X) is now a list of N particles (samples)

* Generally, N << | X]|

* Storing map from X to counts would defeat the point

* P(x) approximated by number of particles with value x s
33)
* So, many x may have p(x) = O! gg;
32)
(33)
3,2)
(1,2)
33)
L[] L[] (313)
* For now, all particles have a weight of 1 (2,3)

* More particles, more accuracy

44
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Nt
= Each particle is moved by sampling its next

position from the transition model
' = sample(P(X'|z))

= This is like prior sampling — samples’ frequencies
reflect the transition probabilities

= Here, most samples move clockwise, but some move in
another direction or stay in place

= This captures the passage of time

= |f enough samples, close to exact values before and
after (consistent)

Particle Filtering: Elapse Time

Particles:
(3,3)
(2,3)
(3,3)
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)

(2,2)
-
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N’

o/
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= Slightly trickier:

Don’t sample observation, fix it

Similar to likelihood weighting, downweight
samples based on the evidence

w(x) = P(e|x)
B(X) x P(e|X)B'(X)
As before, the probabilities don’t sum to one,

since all have been down weighted (in fact they
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
(3,2)
(2,3)
(3,2)
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2) w=.9
(2,3) w=.2
(3,2) w=.9
(3,1) w=.4
(3,3) w=4
(3,2) w=.9
(1,3) w=.1
(2,3) w=.2
(3,2) w=.9

< (#2) w=.;

J

) 4

~

=
46
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g Particle Filtering: Resample

-

N’

* Rather than tracking weighted samples, we Particles:
(3,2) w=.9
resample (2,3) w=2
(3,2) w=.9
(3,1) w=.4
(3,3) w=.4
Q ° (3,2) w=.9
* N times, we choose from our weighted sample (1,3) w=1
) ° ° . ° 2,3 =.2
distribution (i.e. draw with replacement) 23,2; e

(2,2) w=.4

* This is equivalent to renormalizing the distribution

(New) Particles:
(3,2)
(2,2)
* Now the update is complete for this time step, 2
continue with the next one (3.3)
(3,2)
(1,3)
(2,3)
(3,2)
)

A
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- Recap: Particle Filtering

-
. 3artic|es: track samples of states rather than an explicit distribution

Elapse Weight Resample

Particles: Particles: Particles: (New) Particles:
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,3) (2,3) w=.2 (2,2)
(3,3) (3,2) (3,2) w=.9 (3,2)
(3,2) (3,1) (3,1) w=.4 (2,3)
(3,3) (3,3) (3,3) w=.4 (3,3)
(3,2) (3,2) (3,2) w=.9 (3,2)
(1,2) (1,3) (1,3) w=.1 (1,3)
(3,3) (2,3) (2,3) w=.2 (2,3)
(3,3) (3,2) (3,2) w=.9 (3,2)
(2,3) (2,2) (2,2) w=.4 (3,2)
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@ Robot Localization

* |In robot localization:

We know the map, but not the robot’s position

Observations may be vectors of range finder readings

State space and readings are typically continuous (works

basically like a very fine grid) and so we cannot store B(X)

Particle filtering is a main technique

D\ EEC.'TDRY

e




Particle Filter Localization (Sonar)

Global localization with
© SONAr Sensors ;



o Particle Filter Localization (Laser)
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\/ Robot Mapping
N’
*~SLAM: simultaneous localization and mapping
* We do not know the map or our location
* State consists of position AND map! S~ —

* Main techniques: Kalman filtering (Gaussian HMMs) and |

particle methods

! - - —
e I e I y i
— ‘_"_"_____J!"- ‘,_»_———'—"\
L\ ‘ X
= i
e \ |
b ] 1
.

DP-SLAM, Ron Parr




o Particle Filter SLAM — Video 1




Particle Filter SLAM — Video 2







> Dynamic Bayes Nets (DBNs)

S~

*, We want to track multiple variables over time, using multiple sources ( L B
of evidence %V\E

* |dea: repeat a fixed Bayes net structure at each time

e Variables from time t can condition on those from t-1

t=1 t=2 t=3
G]_a Gza G3a """ --=-)>
‘f»
Glb // Gz // G3b S >
@ Q @ Q e E3b -’
* Dynamic Bayes nets are a generalization of HMMs 56



DBN Particle Filters

A particle is a complete sample for a time step
Initialize: generate prior samples for the t=1 Bayes net
* Example particle: g,=(3,3) g,°=(5,3)
Elapse time: sample a successor for each particle
» Example successor: g,2=(2,3) g,°=(6,3)

Observe: weight each entire sample by the likelihood of the evidence conditioned on the
sample

* Likelihood: p(e;? |g,®) * p(e,° |g,")

Resample: select prior samples (tuples of values) in proportion to their likelihood

Y N



Most Likely Explanation

= ;é b &

v

\

58
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« HMMs defined by
* States X
e Observations E
* Initial distribution: P(Xl)
» Transitions: P (X|X_q1)

Emissions: P(E|X)

HMMs: MLE Queries

TPYY

ONONONO

* New query: most likely explanation: Al'g max P($1;t|€1;t>

* New method: the Viterbi algorithm

L]:t



State Trellis

~

=/ State trellis: graph of states and transitions over time

sun sun sun sun
rain rain rain rain
X1 X5 e Xn

Each arc represents some transition £¢t—1 — Lt

Each arc has weight P (x¢|xi—1) P(et|xt)

Each path is a sequence of states

The product of weights on a path is that sequence’s probability along with the evidence

Forward algorithm computes sums of paths, Viterbi computes best paths

7 N Nt



\/ . Forward / Viterbi Algorithms

"/
X1 X2 e XN
Forward Algorithm (Sum) Viterbi Algorithm (Max)
ftlzt] = P(xt,e1:¢) mi|z] = Jmax P(x1:4—1, Tt €1:¢)
' D
= P(et|lws) > P(@t|lwe—1) fr—1lre—1] = P(et|xt) maXP(wtlxt 1)my— 1[£L’t 1] /

"V Qs






Challenge

~

*Setting

* User we want to spy on use HTTPS to browse the internet

* Measurements
 |IP address

* Sizes of packets coming in

e Goadl

* Infer browsing sequence of that user

* e.g.: Medical, financial, legal, ...



— HMM

~

* “Fransition model

* Probability distribution over links on the current page + some probability to navigate

to any other page on the site

* Noisy observation model due to traffic variations
* Caching
* Dynamically generated content
* User-specific content, including cookies

—> Probability distribution P( packet size | page )
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B Liberatore B Panchenko

Results

B Wang-FLL 0O BoG

-

Accuracy
20 40 60 80 100

ACLU Bank of Kaiser Legal
America Permanente Zoom

BoG = described approach, others are prior work

Mayo
Clinic

Netflix Planned Vanguard
Parenthood

~ NS

\

Wells
Fargo

~

o: \\

YouTube

. &
)



Accuracy

40

Results

Session Length Effect

80 100

60

20

0 10 20 30 40 50 60

Length of Browsing Seéssi

70
N



